The generator matrix

 1  0  0  0  0  1  1  1  1  1  1 X^2  X  1  1  0 X^2+X  1  1  1  X  1  1 X^2+X X^2+X X^2+X  X X^2  1  X  1  1
 0  1  0  0  0 X^2 X^2  0  0  0 X^2  0 X^2 X^2+1 X^2+1  1  1 X^2+X+1 X^2+X X^2+X+1 X^2+X  1  X  1  1  1  1  X X^2+1 X^2+X X^2+X+1 X^2+X
 0  0  1  0  0 X^2  0 X^2+1 X+1 X^2+X+1 X^2+X+1  1  1 X^2+X X^2  X  1 X^2+1  0 X^2  1  1  X X^2+X+1 X^2+1  X  0  X X^2+X+1  0 X^2+X+1  0
 0  0  0  1  0  1  X  X X^2+X X+1 X^2+1 X+1 X+1 X^2+X+1 X^2 X^2+X+1 X^2 X^2+1  1 X+1  X  0 X^2+X+1 X^2+1 X^2+1 X+1  1  1 X^2+1  0 X^2 X^2
 0  0  0  0  1  1 X+1 X^2+1  X X+1 X^2  X X^2+1 X^2+X X^2+X+1 X+1 X^2+X+1 X+1 X^2  1 X+1  X  1 X^2+1  0 X+1  0  1  X  1  X X^2+X+1

generates a code of length 32 over Z2[X]/(X^3) who�s minimum homogenous weight is 25.

Homogenous weight enumerator: w(x)=1x^0+158x^25+588x^26+1238x^27+1766x^28+2698x^29+3383x^30+4274x^31+4252x^32+4476x^33+3658x^34+2846x^35+1712x^36+946x^37+451x^38+222x^39+45x^40+26x^41+16x^42+12x^43

The gray image is a linear code over GF(2) with n=128, k=15 and d=50.
This code was found by Heurico 1.13 in 5.47 seconds.